SUSTAINABLE AIRPORT MASTER PLAN (SAMP)

Update: January 27, 2015

Briefing Outline

- Overview
- Airport Economic Engine
- SEA Activity Forecast
- Forecast Implications/Challenges
- Development Constraints
- 2034 Planning Goals & Facility Requirements
- Challenges, Options, & Next Steps
 - Airfield
 - Terminal
 - Landside
- Planning Schedule
- Challenges/Anticipated Actions (Near-Term)
- Sustainability
- Public Outreach Plan

Overview

- Rapid growth and a constrained operational footprint requires strategic land use planning and future Commission policy decisions to provide needed capacity
- Gaining clarity regarding implications of projected growth in passengers and operations – and the necessary facility changes
- Developing and evaluating options to meet facility requirements
- Will need to utilize properties beyond those now a part of the airfield and terminal complex.
- The optimal airport layout maintaining airfield capacity and adding terminal capacity – will require relocation of existing facilities
- Understanding these tradeoffs and the repercussions of balancing needs will be a next step

Sea-Tac serves as critical regional and national asset

- More than 170,000 jobs attributable to airport activity
- \$6.1 billion in total personal income
- \$16.3 billion in business revenue

Growth in air service supports regional economic activity

- Each new international flight generates an estimated \$75 million annually in direct and indirect economic impact to the region
- Keeping freight moving supports local and regional businesses

Connects region to the global economy

Creates new jobs in local communities

- Aeronautical jobs airlines, airline contractors, flight kitchens, aircraft maintenance
- Airport and visitor jobs dining/retail, hotels, parking
- Construction jobs

SEA Activity Forecast

Drivers of domestic and international passenger activity

- Domestic originating passenger demand has strong historic correlation with key economic indicators
 - Inflation-adjusted airfares projected to decline long-term
 - PSRC forecast: per capita income growth in Puget Sound region higher than national average
- Domestic connecting passenger growth tied to airport's ongoing role as hub for Alaska Airlines, and development of Seattle as a Delta Air Lines domestic connecting hub and international gateway
- International originating passenger demand supported by Seattle economic profile and airline business plans
 - Location of global business communities
 - Proximity to Asia
- International connecting passenger activity driven by continued development of Airport as gateway for Delta and foreign-flag airlines.

Passengers and operations

Rapid growth in recent years

- Passengers: up 4.7% in 2013 & 7.5% in 2014
- Aircraft operations: up 2.5% in 2013 & 6.9% in 2014

Airport traffic will grow by 28.5 million annual passengers (MAP) and 190,000 aircraft operations in next 20 years

- 66 million annual passengers (up from 37.5 million in 2014)
- 540,000 annual operations (up from 350,000 in 2014)

Airfield

36% more aircraft on the airfield during peak hours

- 2014 peak hour: 88 operations
- 2034 peak hour: 120 operations
- Operational delays begin at 90 operations per hour today

Airfield impact

- Efficiency <u>exponentially</u> decreases as the airfield reaches and exceeds capacity
- Severe congestion along taxiway in front of terminal caused by departures queue and push back from gates
- Departing aircraft significantly delayed due to runway crossings by arriving aircraft
- Departures delays compounded by shift to larger aircraft

Terminal

• 58% more departing passengers in the terminal during peak hours

- 2014 peak hour: 5,180 passengers
- 2034 peak hour: 8,170 passengers

• 70% more arriving passengers in the terminal during peak hours

- 2014 peak hour: 5,040 passengers
- 2034 peak hour: 8,550 passengers

Terminal impact

- Check-in: processing has become increasingly efficient, but significant expansion of bag drop positions will be required
- Security screening: current configuration of checkpoints is inefficient and future passenger loads will likely exceed capacity
- Baggage claim: at or near capacity today increased loads will cause congestion at claim devices and a low level of customer service

Landside

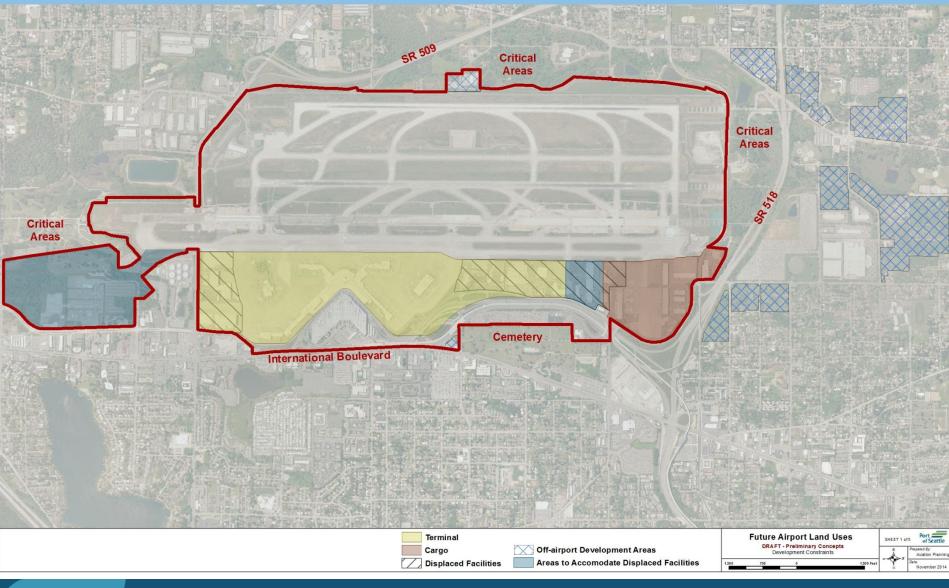
42% more vehicles on Upper Drive during morning peak

- 2014 peak hour: 1,240 vehicles
- 2034 peak hour: 1,760 vehicles

• 61% more vehicles on Lower Drive during evening peak

- 2014 peak hour: 1,170 vehicles
- 2034 peak hour: 1,880 vehicles

Landside impact


- Upper drive sidewalk congestion creates a low level of service today passenger safety and access to the terminal will be severely compromised in 2034 without improvements
- Traffic accessing terminal drives backs-up to control tower and occasionally onto SR 518 today – roadways will gridlock by 2034 without significant capital improvements

Development Constraints

Environmental, airspace, and land use constraints severely limit expansion options

Airport Comparison

No US airport handles comparable passenger volumes with as small an operational footprint as SEA

2013 Airport		Airport		Developed	
PAX rank	Airport name	code	2013 PAX	Acreage	PAX/acre
14	Seattle-Tacoma	SEA	34,800,000	1,500	23,200
7	San Francisco	SFO	44,900,000	2,000	22,450
13	Newark	EWR	35,000,000	1,700	20,590
19	Boston	BOS	30,200,000	1,600	18,880
9	Las Vegas	LAS	40,900,000	2,400	17,040

Land Allocation

- Western operational boundary of airfield is 16R-34L (no 4th runway)
- Three runways are needed in 2034 (cannot push terminal edge west)
- No terminal facilities west of 16R/34L (topography, wetlands)
- Limited footprint requires prioritization of land uses and complex phasing plan. Functional priorities for property allocation:
 - Passenger terminal
 - Airfield
 - Landside
 - Cargo
 - Airline support
 - Airport support
 - General aviation

Gates

 Accommodate all planned, peak hour activity at aircraft parking positions with direct terminal access (*no remote busing operations*)

• Minimum Connect Time (MCT) (people & baggage)

- 60 minute MCT with 20-year SAMP improvements

Dining and Retail

 Adequate concessions and amenities space to optimize revenue and meet customer expectations

Cargo

- Sufficient warehouse and hardstand facilities to meet demand

Roadways

- Reliable terminal access with minimal delay

Parking -- TBD

 35 additional aircraft parking positions with direct terminal access ("gates") – after eight new gates at NSAT

- Providing gates will drive overall airport plan, toppling dominoes airport wide

International Arrival Facility (IAF)

- 27 international widebody gates (vs 11 in 2014 & 18 in 2019)
- 2,200 passengers per hour processing capacity

• 400,000-500,000 total square feet of cargo warehouse (based on SAMP forecasted growth)

- Warehouse space will need to be consolidated and potentially mechanized to accommodate projected growth
- Currently assessing ramp space requirements
- Analyzing potential to accommodate Century Agenda growth

Airport access roadways, terminal drives and parking

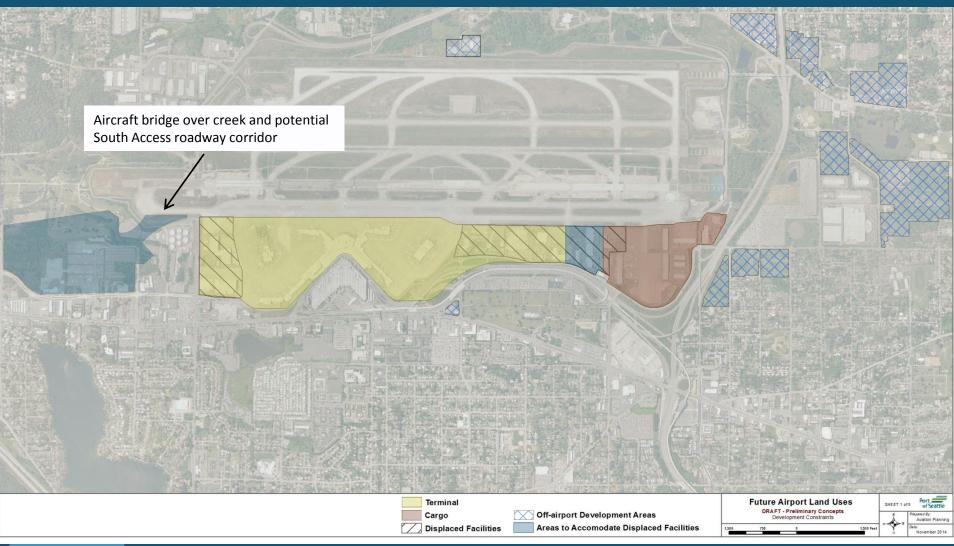
Terminal

- Check-in Expanded current terminal or additional terminal?
- Security screening
- Holdrooms
- Dining & retail
- Baggage systems
- Campus-wide "Automated People Mover" (APM) (RCF to terminal; between terminals; terminal(s) to remote concourses)

Airline support

- Aircraft maintenance & Ground Run-up Enclosure (GRE)

Airport support


- Airport Rescue and Firefighting station (ARFF)
- Ground Service Equipment (GSE) maintenance

Airfield

Challenges

• Additional airfield connected land required to meet demand

Challenges

- Accommodate 120 peak hour operations (up from 88 with no airfield expansion)
- Increase airfield efficiency to make full use of three runway system
 - Minimize runway crossings
 - Reduce congestion on Taxiway B and improve access to/from south end gates in north flow

Other factors that impact airfield capacity

- Closely spaced runways require staggered arrivals
- Interactions with Boeing Field create departure and arrival delays

Sustainable Airport Master Plan

Airfield

Options

End-around taxiways

- 70% of operations (all Group III) could avoid crossing departures runways
- Minor reduction in take-off weight for large, long-haul international flights
- Center runway could become primary departure runway significant increase in efficiency/capacity

Taxiway A extension

- Doubles queuing capacity
- Provides a bypass on south end taxiway system
- Improves access to/from south end gates & SASA

Airfield

Next Steps

- Alternatives analysis (detailed modeling will determine efficiency benefits of airfield improvements)
 - Further develop potential capital and operational fixes
 - Airfield and terminal ramp modeling
 - Feasibility and cost/benefit

Coordination with FAA

Challenges

• Aircraft parking positions with direct terminal access ("gates")

- Provide 35 additional gates
- Expand terminal in manner that:
 - Will be operationally efficient
 - Will connect widebody gates to IAF with good customer service
 - Can be phased with least disruption to existing facilities

Remain Over Night (RON) aircraft parking positions

 Locate required RON north and south of the expanded terminal to minimize operational impacts of towing

Passenger processing capacity

- Can we support 35 additional gates with a single, expanded terminal?
 - Or is a second terminal needed to supporting new gates to north?
 - How do we connect passengers between new concourses and terminal(s)?

Sustainable Airport Master Plan Seattle-Tacoma International Airport

• Expansion is needed north and south to provide additional gates

Early decisions:

- Concourse A extension or additional south satellite, and
- Piers north of existing terminal <u>or</u> North Satellite extension

Based on decision above, then decide:

- Expand current terminal <u>and/or</u> build additional terminal to the north

Terminal: Gates -- South

Concourse A Extension

Pros

- Meets international gate requirement
- Widebody gate connection to IAF through Concourse appears better
- Does not require lidding over S 188th ST
- Dual taxilanes between new gates and SSAT

Cons

– Yields fewer gates

Additional South Satellite

Pros

- Meets international gate requirement
- Yields more gates

Cons

- Difficult widebody gates connection to IAF
- Requires lidding over S 188th ST
- Single taxilane between new gates and SSAT

Terminal: Gates -- North

North Piers

North Satellite Extension

Pros

- Meets domestic gate requirement
- Straightforward opportunity for second terminal (*if required*)
- May not require relocation of southbound lanes of North Airport Expressway (*if no second terminal*)
- Can more easily phase gates additions
- Easier to accommodate widebody aircraft

Cons

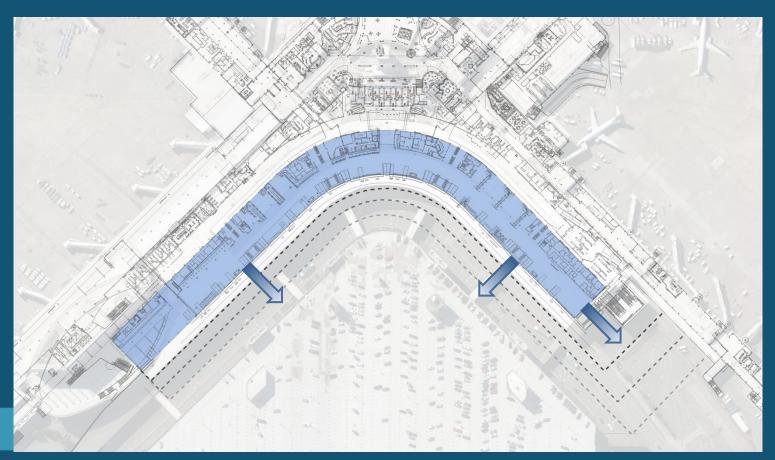
Challenge connecting passengers to the north

Pros

- Meets domestic gate requirement

Cons

- Pushback onto taxiway impacts operations
- Limited opportunity for second terminal if required
- Requires relocation of southbound lanes of the North Airport Expressway (NAE)
- Gate phasing has more impact to existing facilities
- Limited ability to accommodate widebody aircraft
- Challenge connecting passengers to the north


Terminal: Check-in

Options – Main Terminal Expansion

Expand Main Terminal to the east and north

- Expand check-in lobby to the east and north
- Link screening check-points to APM access to remote gates
- Expand bag claim to the north

Terminal: Check-in

Options – Additional Terminal to the North

Construct second terminal to support north gates

- Connect existing terminal and north terminal with APM
- Provide landside access, curb, and parking
- Provide pedestrian connection to gates over/under North Airport Expressway

Terminal

Next Steps

Detailed analysis of expansion options

- Cost/benefit of south and north expansion options
- Cost/benefit and feasibility of terminal expansion to the east/north
- Capacity analysis to determine if second terminal is needed

Incorporate non-terminal functions into overall terminal plan

Coordinate terminal-related facilities planning

- Check-in/Bag drop
- Curbside
- Security screening
- Automated People Mover (APM)
- Baggage systems
- Holdrooms; Dining & retail; vertical circulation

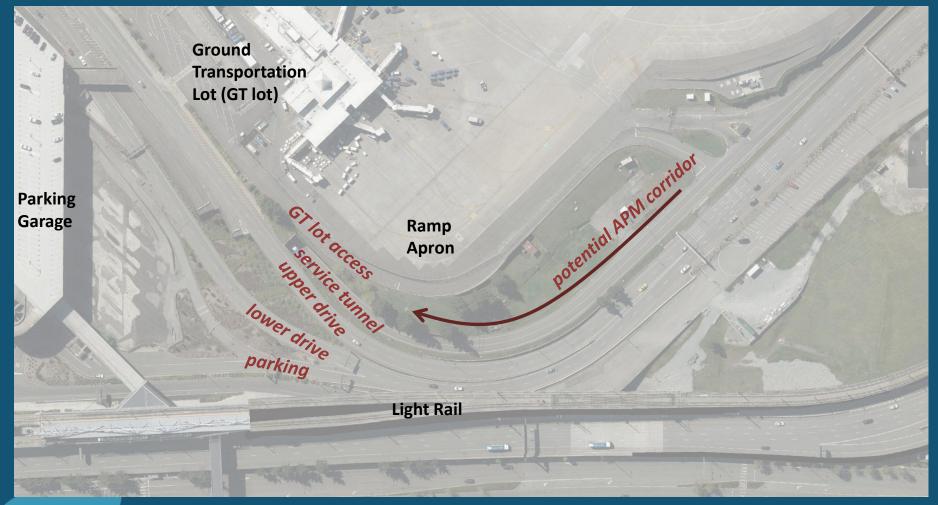
• Airfield and terminal ramp modeling

Landside

Challenges

Upper and Lower Drive expansion difficult

- Expensive
- Construction impacts on operations
- Expressway access to parking / Upper/Lower Drives exceedingly narrow
- Regional roadways outside of direct Port control
 - SR 509 extension has been delayed for decades
 - Phasing of South Access needs to be modeled and evaluated
- RCF bus traffic contributes to congestion accessing the drives
 - Anticipated eventual automated people mover when RCF was built



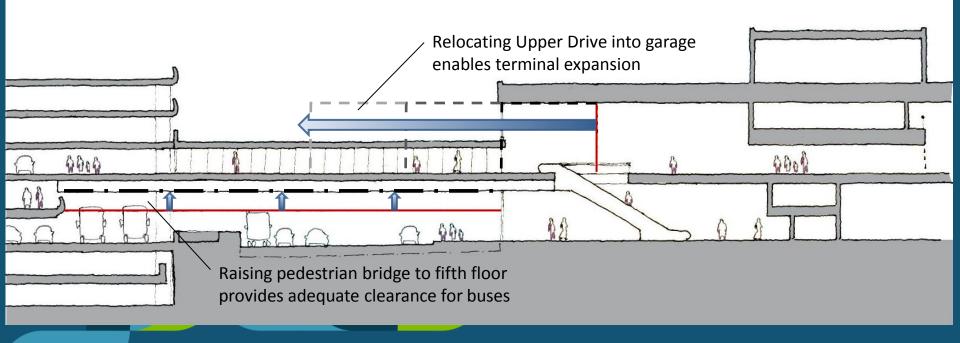
Landside

Challenges

All traffic accessing the airport funnels through a bottleneck on the North Airport Expressway (NAE)

Options - Upper Drive Expansion

- Widen Upper Drive
- Add 3rd lane to Upper and Lower Drive access
- Potentially divert demand to alternate drop-off locations
- Complex interaction with terminal expansion options


Landside

Options - Upper Drive in Parking Garage

Relocate Upper Drive into garage

- Enables expansion of main terminal to the east
- Provides additional clearance on 3rd floor ground transportation curb for buses
- Provides opportunities for APM connection to main terminal

Landside

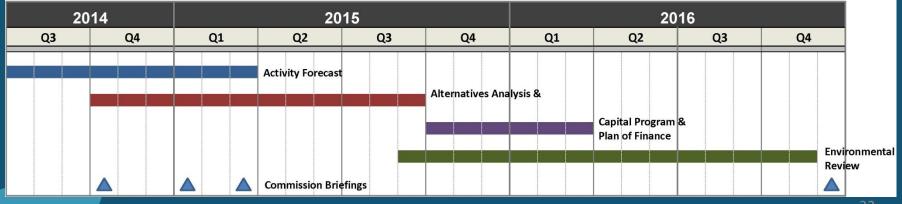
Next Steps

- Critical and organic interaction between possible terminal expansion and curb/garage options
- Continue refining curbside relocation/expansion alternatives
 - Feasibility of required modifications to curbs and garage
 - Cost/benefit

Landside modeling

- Drives capacity/demand analysis
- Connections to regional roadway system

 Integration of opportunities, costs, and impacts of terminal and landside options



Planning Schedule

- Activity forecast (completed Q3 2014 in FAA review Q1 2015)
- Alternatives analysis & plan development (Q4 2014 Q3 2015)
 - Iterative process, finalizing facility requirements and developing preferred development alternative
 - Commission engagement at key decision points
 - Constructability assessment
 - Phased implementation plan
 - Planning level cost estimates
- Program plan of finance (Q4 2015 Q1 2016)
- **Environmental review** (Q3 2015 Q4 2016)

Near-Term

Challenges

- Shortage of gates over the next 5 to 10 years
- Where/when to build interim remote gate lobby?
- Additional gate capacity will be needed soon after completion of IAF & NorthSTAR
- Check-in processing becoming increasingly efficient, but nearly all existing positions will be utilized in 2015
- Security screening rates have increased with implementation of PreCheck, but current configuration of checkpoints is inefficient

• Anticipated actions prior to completion of SAMP environmental

- Remote hardstand operations and busing starting in 2016
- Potentially construct interim remote gate lobby
- Expand check-in and reconfigure security checkpoint in zone 7
- Provide additional bag drop on promenade level in zone 6

Sustainability

Draft Strategy for a Sustainable Sea-Tac (S3)

- Builds on our Environmental Strategy Plan 2009 2014
- Includes sustainability objectives, social responsibility and economic sustainability
- Commission briefing February 10th
- Draft strategy Spring 2015

S3 integration into SAMP

- S3 objectives and initiatives evaluated throughout the SAMP process to ensure that capital development is planned in the most sustainable manner possible
 - Environmental sustainability objectives used as part of screening criteria in evaluating concepts
 - Environmental sustainability objectives will be evaluated extensively in proposed new buildings and renovations of existing buildings
 - Final, long-term plan will include management initiatives (in addition to capital improvements) to ensure airport meet its sustainability goals and objectives in future years

Public Outreach

Public outreach planning

– Phase I: Series of meetings with local officials and stakeholders

– Phase II: Conduct 3 public outreach & comment meetings

- 1st Public Meeting (February-March 2015): SAMP process, goals, forecast, and development concepts
- 2nd Public Meeting (Spring 2015): Preliminary development alternatives
- 3rd Public Meeting (Summer 2015): Preferred development alternative